Announcements

A presência de todos durante as apresentações dos seminários é obrigatória !



Information on the course on Físico-Química e Termodinâmica dos Sólidos, SFI5769, 2025-1

Semester: 2025-1
Responsable: Prof. Philippe W. Courteille, philippe.courteille@ifsc.usp.br
Start and end of classes: 10.3.2025 to 25.6.2025
Queries: via e-mail
Time and location of classes:Mondays and Wednesdays from 10h00 to 12h00 in room 18 of bloco F2 or via Google meet
Dates of the seminar: 23.6.2025
Holidays: 14.-19.4.2025 (semana santa), 21.4. (Tiradentes), 1.-3.5. (dia do trabalho), 19.-21.6. (corpus Cristi),
Language: Portuguese, French, German or English (to be agreed with the students)
Workload:
Theory 4 per week
Practice3 per weak
Studies 8 per weak
Duration15 weaks
Total 225 hours
Content:

This is a graduate course! The 'raison d'être' of graduate courses shall be to bring the student to the forefront of current research activities in the the lecturer's area of expertise. For the present course this means that the student is supposed to be familiar with the basics of electromagnetism and its formalism. It is up to the student who realizes that he has gaps of knowledge to fill them until being able to benefit from the lectures. Possible topics of this lecture include:

1. Equilibrium thermodynamics
2. State function
3. First law and the conservation of energy
4. Thermal capacity and entropy (second Law)
5. Gibbs and Helmholtz energy
6. Maxwell relation
7. Third law of thermodynamics
8. Chemical potential
9. Phase and equilibrium diagram
10. Chemical equilibrium
11. Statistical thermodynamics
12. Partition and state function
13. Translational, rotational, and vibrational quantization laws
14. Molar thermal capacity in solids
15. Quantum statistics (Bose-Einstein, Fermi-Dirac and Boltzmann distribution)
16. Electronic structure in solids
17. Structure and physical properties of systems
18. Crystalline structure
19. Defects in solids
20. Mass and charge transport
21. Thermal conduction
22. Capillarity effects
23. Electrochemistry

Evaluation/approvation:

Written tests will be applied, homeworks will be given, and a seminar will be organized. The seminar will include a written monograph and an oral presentation. The seminar grade counts 1/2 of the final grade. The presentation of the exercises and the participation in the subsequent discussions will be evaluated and counts for 1/2 in the final grade.


Recomended literature: Philippe W. Courteille, Apostila do Curso: Thermodynamics
Philippe W. Courteille, Apostila do Curso: Quantum mechanics
R.T. DeHoff, Thermodynamics in materials science, Boca Raton: CRC/Taylor Francis (2006)
C. Kittel, Introduction to solid state physics, 8th ed. Hoboken, NY: Wiley (2005)
H.B. Callen, Thermodynamics, 2nd ed. New York: Wiley (1985)
A.R. West, Basic solid state chemistry, 2nd ed. Chichester: Wiley (2006)
D. Mc Quarry, Statistical thermodynamics, New York: Harper & Row (1973) Harper's chemistry series



Exercises

To successfully absolve this course, the student must study the material indicated in the 'Topic' column of the table below and made available in the courses' script 'Thermodynamics' until the date indicated in bold letters in the table below. Also, he must solve the exercises indicated in blue color and be prepared to present it fluently. The chapters marked by 'QM' refer to the script 'Quantum mechanics'.

Date of presentationChapter of scriptExerciseTopic
-------------------------------------------------------------------------
10.03.2025 1.1.1 - 1.1.3 Temperature, kinetic theory, heat and work
12.03.2025 1.2.1 - 1.2.3 Thermodynamic state functions, process variables, potentials, and laws, entropy, Legendre transform, coefficient relations, Maxwell relations
17.03.2025 1.1.4.1Gas thermometer (Lucas)
17.03.2025 1.1.4.3Barometric formula (Vinicius)
17.03.2025 1.1.4.5Depth gauge (Claudio)
17.03.2025 1.1.4.6Scuba diving (Louis)
17.03.2025 1.1.4.8Kinetic pressure (Vinicius)
17.03.2025 1.2.4 - 1.2.5 Strategy for deriving thermodynamic relations, ideal gases
19.03.2025 1.2.6 Adiabatic, reversible, and cyclic processes, the Carnot cycle
24.03.2025 1.1.4.10Bi-metal (Vinicius)
24.03.2025 1.1.4.13Heat capacity and energy of air (Louis)
24.03.2025 1.1.4.14Calorimetry (Claudio)
24.03.2025 1.2.8.21. law of thermodynamics (Lucas)
24.03.2025 1.2.8.3Specific heat (Philippe)
24.03.2025 1.2.7 - 1.3.1 Real gases and the Joule-Thomson process, thermodynamic equilibrium
31.03.2025 1.2.8.9Gas expansion (Louis)
31.03.2025 1.2.8.15Calorimeter for mixtures (Lucas)
31.03.2025 1.2.8.162. law of thermodynamics (Louis / Vinicius)
31.03.2025 1.2.8.18Specific heat (Claudio)
31.03.2025 1.3.2 - 1.4.1 Entropy maximization and chemical potential, coupling to specific reservoirs
02.04.2025 1.4.2 - 2.1.1 Specific ensembles and their thermodynamic potentials, unary heterogeneous systems, construction of phase diagrams, stability domain
07.04.2025 1.2.8.19Expansion of a gas (Louis)
07.04.2025 1.2.8.23Heat and work upon thermodynamic processes in an ideal gas (Vinicius)
07.04.2025 1.2.8.25The Otto cycle (Vinicius)
07.04.2025 1.2.8.34Dieterici model for a real gas (Claudio)
07.04.2025 1.3.3.1Gibbs free energy (Lucas)
07.04.2025 2.1.2 - 2.1.3 Clausius-Clapeyron equation, latent heat, vaporization and sublimation, triple point, vacuum technology
09.04.2025 2.2.1 - 2.2.3 Homogeneous multi-component systems, Gibbs-Duhem relation, partial molal quantities, chemical potential in solutions
14.04.2025 2.2.4 - 2.3.2 Models of real solutions, osmotic pressure, heterogeneous multi-component systems, Gibbs phase rule, phase diagram structure
16.04.2025 1.4.3.2Thermodynamic potential (Claudio)
16.04.2025 2.1.4.1Chemical potential surface (Vinicius / Louis)
16.04.2025 2.1.4.2Clausius-Clapeyron relationship (Lucas)
16.04.2025 2.1.4.3Measurement of latent heat upon water condensation (Vinicius)
16.04.2025 2.1.4.7Latent heat (Matheus)
16.04.2025 2.4.1 - 2.4.2 Continuous non-uniform systems exposed to external forces
23.04.2025 2.1.4.8A lake in winter (Vinicius)
23.04.2025 2.1.4.10Vacuum chambers (Matheus)
23.04.2025 2.1.4.11Pumping speed in vacuum chambers (Claudio)
23.04.2025 2.2.6.1Partial pressures (Lucas)
23.04.2025 2.2.6.2Gibbs-Duhem integration (Lucas / Louis)
23.04.2025 2.5.1 - 2.5.2 Uni- and multivariant reactions in gases
28.04.2025 4.1.1 - 4.1.6 Micro- and macrostates, statistical entropy, equilibrium, canonical partition function, thermodynamic potentials for two-level systems and solids, Maxwell-Boltzmann distribution
05.05.2025 2.2.6.3Oxygen concentration in a metal (Claudio)
05.05.2025 2.2.6.4Gibbs-Duhem rule (Matheus)
05.05.2025 2.2.6.5Osmotic pressure of a NaCl solution (Vinicius)
05.05.2025 2.3.3.1Volume change in a multi-phase multi-component system (Lucas)
05.05.2025 2.4.3.1Pressure in a harmonically trapped ideal gas (Claudio)
05.05.2025 4.2.1 - 4.2.2 Detailed balance, microcanonical ensembles of indistinguishable particles
07.05.2025 4.2.3 - 4.2.4 Density-of-states in trapping potentials, grand-canonical ensembles of ideal quantum gases
12.05.2025 2.4.3.2Atmosphere of a planet (Matheus)
12.05.2025 2.4.3.3Centrifuges (Louis)
12.05.2025 2.5.3.1Final composition of an ideal gas mixture (Lucas)
12.05.2025 2.5.3.2Hydrogen concentration in a metal (Matheus / Claudio)
12.05.2025 4.1.7.1Probabilities (Vinicius)
12.05.2025 4.2.5 Thermodynamic limit, Bose and Fermi functions
14.05.2025 4.3.1 Bose-Einstein condensation of a homogeneous gas
19.05.2025 4.1.7.3Probabilities (Vinicius)
19.05.2025 4.1.7.4Idiots roulette (Matheus)
19.05.2025 4.1.7.5Students roulette (Claudio)
19.05.2025 4.1.7.8Simple model for a solid (Vinicius)
19.05.2025 4.3.2 Condensation of a harmonically trapped Bose gas
21.05.2025 4.1.7.9Velocity distribution (Matheus / Vinicius)
21.05.2025 4.3.3 - 4.4.1 Density and momentum distribution of a trapped Bose gas, quantum-degenerate Fermi gas
26.05.2025 4.1.7.13Evaporation (Matheus)
26.05.2025 4.1.7.14Trapped gases (Claudio)
26.05.2025 4.1.7.15Trapped gases (Louis)
26.05.2025 4.2.6.1Quantum statistics (Lucas)
26.05.2025 4.2.6.4Entropy in the grand canonical ensemble (Vinicius)
26.05.2025 4.4.2 - 4.4.3 Thermodynamic potentials of a trapped Fermi gas
28.05.2025 4.4.4 - 4.4.8 Spatial and momentum distribution of a trapped Fermi gas
04.06.2025 4.2.6.5Energy fluctuation in grand canonical ensembles (Matheus)
04.06.2025 4.2.6.6Black-body radiation (Louis)
04.06.2025 4.3.4.2Thermodynamic quantities for a Bose gas trapped in a box (Vinicius / Claudio)
04.06.2025 4.3.4.4Time-of-flight distribution of a Bose-gas (Lucas)
04.06.2025 QM 27.1 - 27.3 Interacting Bose gas, the Gross-Pitaevski equation
09.06.2025 QM 23.1 - 23.5 Quantum sensing with cold atoms and matter waves
11.06.2025 Lab visit
18.06.2025 Seminar
23.06.2025 Seminar



Seminar

Date of presentationSpeakerTopic
-------------------------------------------------
23.06.2025 presential Claudio The Ising model
23.06.2025 presential Louis Thermodynamic properties of Wigner Crystals
23.06.2025 presential Lucas Thermodynamics of mechanochemistry in solid state reactions
23.06.2025 presential Matheus Bose-Einstein condensation
23.06.2025 presential Vinícius The free electron gas model

Evaluation criteria for the seminar:
  Structure: motivation and contextualization, introduction and outline of the organization of the presentation, conclusion
  Content: choice of topics, logical organization and didactics of argumentation, preparation to answer questions and to survive a discussion
  Didactics: abundant use of examples and schemes, interpretation and discussion of results, implication of the audience, capacity of raising curiosity in the audience
  Presentation:clarity and conciseness, organization of the talk or the blackboard, fluency of the presentation
The active participation of every student in discussions following the presentations of other students will also be evaluated!
Link to the seminar booklet of the course on 'Thermodynamics'

Suggestions for seminar topics:Bose-Einstein condensation,
Ultracold Fermi-gases,
Dicke phase transitions,
The Ising model,
Heat engines,
Non-equilibrium thermodynamics,
Brownian motion,
The Debye model,
The electron gas model.